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1 Introduction

This draft describes using and understanding a software for genome-wide
genetic evaluations and validations, inspired in the theory by [6], and used
for own our research in [4]. The program is self-contained, using modules
from Ignacy Misztal’s BLUPF90 distribution at http://nce.ads.uga.edu/

~ignacy. Some functions and subroutines have been taken from the Alan
Miller web page at http://users.bigpond.net.au/amiller/. It has been
tested with NAG f95, ifort and gfortran >= 4.3. Gustavo de los Campos
helped me with the heterogenous variances.

The computing methods have been described in [3].

1.1 History

I wrote this program to implement genome-wide genetic evaluation (aka ge-
nomic selection) in mice [4], as there was nothing available around. The
program uses Gibbs sampling, by means of an unconventional Gibbs sam-
pling scheme [3]. It accepts quite general models.

2 Background

Recently, the availability of massive “cheap” marker genotyping raised up
the question on how to use these data for genetic evaluation and marker
assisted selection. Proposals by [2, 6] among others, use a linear model for
this purpose, in which each marker variant across the genome is assigned a
linear effect, as follows:

yi =
n∑

j=1

(zijkajk) + ei

where yi is the phenotype of the i-th animal, zijk is an indicator covariate
for the i-th animal and the j-th marker locus in its k-th allelic form, and ei is
a residual term. This implies that for 10000 loci and biallelic markers, 20000
effects have to be estimated. Hereinafter and for the sake of clarity we will
refer to ajk as “marker locus effects”.

3 Models

3.1 General model

The following kind of linear models is supported:
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y = Xb + Za + Wd + Tu + Sc + e (1)

Including any number and kind (cross-classified, covariates) fixed effects
(b), and random (multivariate normal) additive a and dominant d marker
locus effects, polygenic infinitesimal effects u, and random environmental
effects c.

Random effects have associated variance components. You can estimate
them using the software, or (much faster), if you have previous estimates of
genetic variance σ2

u, you can use an approximate formula which is extensively
discussed in [1]: σ2

a = σ2
u/2

∑
piqi where pi is the allelic frequency at SNP i.

For the sake of simplicity, we further assumed biallelic loci and a simpler
model as follows. In the j-th locus, there are two possible alleles for each SNP
(say 1 and 2), and there are three possible genotypes: “11”, “12” and “22”.
We arbitrarily assign the value +1

2
aj to the allele 1 and the value −1

2
aj to

the allele 2. This follows a classical parameterization in which aj is half the
difference between the two homozygotes [5]. These are the additive effects of
the SNP’s and they can be thought of as classical substitution effects in the
infinitesimal model.

As for the dominant effect, it comes up when the genotype is “12”.

3.2 Heterogeneity of variances

Heterogeneity of variances in the residual is accepted (v.gr., for use of DYD’s
with their accuracies) through a column of weights. These works as follows:
let ωi be the weight for record i. These implies that the distribution for yi

is:
yi| · · · = N(ŷi, σ

2
e/
√
ωi), where ŷi = xib + zia + wid + tiu + sic.

Thus e ∼ N(0,R), where Ri,i = σ2
e/
√
ωi.

In a typical case, weights ω are reliabilities of DYD’s expressed as “equiv-
alent daughter contributions”.

3.3 Submodels

Any submodel from the above can be used but random effects can only be
included once, e.g., there is no possibility of including two random environ-
mental effects (say litter and herd-year-season).

3.4 A priori information

Prior inverted-chi squared distributions can be postulated for variance com-
ponents σ2

a, σ2
d, σ2

u, σ2
c , σ2

e for estimation with VCE. These are also starting
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values.

4 Functionality

4.1 MCMC

A full MCMC is run with the keyword VCE. This samples all possible un-
knowns (y,b, a,d,u, c, σ2

a, σ
2
d, σ

2
u, σ

2
c , σ

2
e) . Output are samples of variance

components components and a posteriori means for b, a,d,u, c. “General-
ized” genomic breeding value estimates (EBV’s) are also in the output.

Continuation (in the case of sudden interruption or just the desire of run-
ning more iterations) are possible via a specific keyword. The continuation
is done by reading the last saved state of the MCMC chain, so be careful not
to delete that file (named parameter_file_cont).

4.2 BLUP

BLUP is defined here in the spirit of Henderson’s BLUP, as in [6]. Therefore
it is an estimator that assumes known variances for all random effects. The
keyword is BLUP.

4.3 MCMCBLUP

Same as before, but random effects are estimated via Gibbs sampler (assum-
ing known variances). These provides standard errors of the estimates. The
keyword is MCMCBLUP.

4.4 PREDICT

Option PREDICT computes estimates of the prediction of phenotype given
model estimates. This is useful for cross-validation, but for computation
of overall individual genetic values as well, if any of a,d,u are included.
Additive values would be a,u. The keyword is PREDICT.

For example, if you have candidates for selection, create a file with dummy
phenotypes (e.g. 0) and pass them through PREDICT.
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5 Use

5.1 Parameter file

This is an example of a typical file running a full MCMC analysis. It is quite
messy :-(. Be careful, the order has to be kept!

DATAFILE
./exo.txt
PEDIGREE FILE
./pedigri.dat
NUMBER OF LOCI (might be 0)
10946
METHOD (BLUP/MCMCBLUP/VCE/PREDICT)
BLUP
GIBBS SAMPLING PARAMETERS
NITER
10000
BURNIN
2000
THIN
10
CONV_CRIT (MEANINGFUL IF BLUP)
1d-4
CORRECTION (to avoid numerical problems)
1000
VARIANCE COMPONENTS SAMPLES
var.cage.animal.txt
SOLUTION FILE
solutions.cage.animal.txt
TRAIT AND WEIGHT COLUMNS
1 0 #column 0 for weight means no weight
NUMBER OF EFFECTS
5
POSITION IN DATA FILE TYPE OF EFFECT NUMBER OF LEVELS
6 cross 1
5 add_animal 2272
7 perm_diagonal 600
8 add_SNP 0
8 dom_SNP 0
FORMAT
(7f12.0,1x,a21892)
VARIANCE COMPONENTS (fixed for any BLUP, starting values for VCE)
vara
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2.52d-04 -2
vard
1.75d-06 -2
varg
3.56 -2
varp
2.15 -2
vare
0.19 -2
RECORD ID
5
CONTINUATION (T/F)
F
MODEL (T/F for each effect)
T T T T T

Let analyze by logical sections.

5.1.1 Files and input-output

This should be self-explanatory. If you do not have pedigree file, put a blank
line.

DATAFILE

./exo.txt

PEDIGREE FILE

./pedigri.dat

...

FORMAT

(7f12.0,1x,a21892)

...

VARIANCE COMPONENTS SAMPLES

var.cage.animal.txt

SOLUTION FILE

solutions.cage.animal.txt

Note that the continuation file is automatically created as
parameter file cont.

Other files automatically created are predictions (if PREDICT) and
parameter file EBVs with estimated breeding values.

The FORMAT statement has to contain a valid Fortran format. Fixed
format is needed in order to read the SNPs in a simple way. In the example,
there are 7 columns with numbers (either integer or real) or width 12, one
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space, and a single, long, chain of characters of width 21892 (i.e. twice the
number of SNPs).

5.1.2 Model features

NUMBER OF LOCI (might be 0)

10946

METHOD (BLUP/MCMCBLUP/VCE/PREDICT)

BLUP

...

TRAIT AND WEIGHT COLUMNS

1 0 #column 0 for weight means no weight

NUMBER OF EFFECTS

5

POSITION IN DATA FILE TYPE OF EFFECT NUMBER OF LEVELS

6 cross 1

5 add_animal 2272

7 perm_diagonal 600

8 add_SNP 0

8 dom_SNP 0

...

MODEL (T/F for each effect)

T T T T T

In the TRAIT AND WEIGHT COLUMNS the column of trait and its weight
have to be specified. If the column for weight is 0, then no weight is assumed.

The number of loci is the total number of SNPs.
For the methods, see above.
Write as many lines under POSITION... as number of effects. The

POSITION means in which the column the effect is located in the data file
(which has to be in free format, i.e., columns separated by spaces). The TYPE
OF EFFECT is one of the following (with their respective keywords):

• cross generic cross-classified ”fixed” effect

• cov generic covariable

• add SNP additive SNP effect

• dom SNP dominant SNP effect

• add animal additive infinitesimal effect
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• (perm diagonal) generic environmental random effect

You can put in your model as many generic covariables and cross-classified
“fixed” effects as you want but you can put only one (or none) of the other.

The NUMBER OF LEVELS has to be 1 for covariables (no possibility for
nested covariables and the like); for the SNP effects, it is determined by the
NUMBER OF LOCI.

The MODEL statement allows to quickly change the model fixing a logical
variable in model to true (t) or false (f). But using this feature quickly
becomes confusing.

5.1.3 MCMC and convergence features

GIBBS SAMPLING PARAMETERS

NITER

10000

BURNIN

2000

THIN

10

CONV_CRIT (MEANINGFUL IF BLUP)

1d-4

CORRECTION (to avoid numerical problems)

1000

That is, a number of iterations of 10000 with a burn-in of 2000 and a thin
interval of 10. The convergence criteria CONV CRIT is used for BLUP, where
Gauss Seidel with Residual Update is used [3]. The CORRECTION is used for
this same strategy. Rules of thumb are:

• For MCMC: number of iterations of 100000 and burn-in of 20000. This
is a minimum if you include SNPs and you estimate variances. Correc-
tion every 10000 iterations.

• For BLUP (known variances): number of iterations of 10000 (it will stop
before); put a convergence criteria of 10−8 (1d-8) and correction every
100 iterations. If you want a quick result, you may put a convergence
criteria of 10−4, this resulted in negligible errors in our work.

5.1.4 A priori and starting information

VARIANCE COMPONENTS (fixed for any BLUP, starting values for VCE)
vara
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2.52d-04 -2
vard
1.75d-06 -2
varg
3.56 -2
varp
2.15 -2
vare
0.19 -2
RECORD ID
5
CONTINUATION (T/F)
F

Under VARIANCE COMPONENTS initial or a priori values are given. If the
strategy is BLUP, these are the known variances; otherwise for MCMC, these
are a priori distributions (inverted chi squared) for variance components. The
first value is the expectation of the a priori distribution; the second one are
the degrees of freedom. If the degrees of freedom are -2, these are “flat”
(improper) distributions (roughly) equivalent to assumptions under REML.

The RECORD ID is used to trace the records across the cross-validation
process. This should be numeric field with a unique number for each record
(not necessarily correlative).

The CONTINUATION statement implies this run (a MCMC one) is a con-
tinuation of a previous, interrupted one. If this is the case, a new file with
variance components samples is created, as variances file_cont.

5.2 Pedigree file

The pedigree file has three columns: animal, sire, dam, separated by white
spaces (free format). All have to be renumbered consecutively from 1 to n.
Unknown parents are identified as 0. A fragment follows:

342 0 0

343 0 0

344 0 0

345 150 323

346 104 277

347 91 263

348 81 253

349 141 314

350 157 330
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5.3 Data file

The data file has certain restrictions, in that the format of the SNP infor-
mation is somewhat specific. The format is fixed format as described by the
FORMAT. Trait values, covariables, cross-classified effects (coded from 1 to the
number of levels), and the record ID can be in any order.

The SNP effects have to be in one single column, coded as 1/2 (i.e., no
letters, no triallelic SNP); a value of 0 implies a missing value (see below).
No space is allowed among SNPs. The order is: first allele at the first locus,
second allele at the first locus, first allele at the second locus, second allele
at the second locus, and so on. An example (3 SNP loci) follows:

20.3 1.08004 0.952123 1.45443 345 1 69 121212

26.7 0.99726 1.01302 1.13901 346 2 27 121222

19.5 1.08285 0.900454 1.33243 347 2 43 221122

22.2 1.02697 1.01719 0.92849 348 2 2 121212

17.3 1.05095 0.958695 1.42519 349 1 218 221122

18.1 1.0204 1.05445 0.384847 350 2 17 121212

25.6 0.95566 0.947974 2.06488 351 2 57 121222

20.6 1.01382 0.921759 1.59988 352 2 36 121222

17.3 1.01025 0.99182 1.11917 353 1 550 221122

16.3 1.00517 0.993156 0.815969 354 2 66 221122

21.8 0.9588 0.981813 1.73226 355 2 418 121212

The first four columns are the trait values, the 4th column is the animal
ID (coded as in the pedigree file), the 5th is a cross-classified sex effect,
the 6th column is the “cage” effect, and the last, one, single (i.e., no space
between different SNP/locus), column has the SNP codes. These are read
based on the format described below as a “word” and from then considering
NUMBER OF LOCI, so be careful when writing it. For this particular example,
the syntax would be:

NUMBER OF LOCI (might be 0)
3
...
TRAIT COLUMN
1 0
NUMBER OF EFFECTS
5
POSITION IN DATA FILE TYPE OF EFFECT NUMBER OF LEVELS
6 cross 1
5 add_animal 2272
7 perm_diagonal 2000
8 add_SNP 0
8 dom_SNP 0

Note that if your SNP column is buggy (less or more SNP than expected)
you might have unpredictable results.
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5.4 Missing values of traits or genotypes

For estimation, missing values of traits in are not allowed! Please clean
your data set first. For prediction (keyword PREDICT), put whatever numeric
column you like or a column with 0’s.

If there are missing values for SNP effects, these are not considered for
that animal; in practice this assumes the animal as an heterozygote for that
SNP.

5.5 Variations

5.5.1 Changing random seeds

If you want to check your results with a different run, you can change the
random seeds in MODULE Ecuyer_random, calling subroutine init_seeds at
the beginning of the main program.

5.6 Compiling

The Fortran code is pretty standard, although some of the libraries might
require some compiler switchs for portability. The main program uses a list
structure using “allocatable components”, aka TR 15581, which is standard
in Fortran95 and available in most compilers, in particular in the free (GNU
GPL licensed) compilers gfortran (>= 4.3) and g95.

5.7 Run

Running is as simple as calling it from the command line and answering
about the parameter file:

legarra@cluster:~/mice/gsiod/gs_sparse$ ./gs3

what parameter file?

together.cage.par

5.8 Output

The program does some internal checking and informative printouts, as fol-
lows:

BEWARE

number of levels for effect 1 type cross changed from

1 to 2 line 2

----------------------
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-- GS3 --

----------------------

by A.Legarra

INRA, FRANCE

03/12/2009

----------------------

03/12/2009 08:06:17

parameter file:

together.cage.par

data file:

./exo.txt

with: 1884 records

reading positions 6 5 7 8 8

the record id is in column 5

trait read in 1 with weight in col 0

pedigree file:

./pedigri.dat

with: 2272 records read

model with 5 effects=

-> generic cross-classified ’fixed’ effect in position 6

with 2 levels

-> additive infinitesimal effect in position 5

with 2272 levels

-> generic environmental random effect in position 7

with 2000 levels

-> additive SNP effect in position 8

with 10946 levels

-> dominant SNP effect in position 8

with 10946 levels

for a total of 26166 equations

length(in_data)= 7

reading format(7f12.0,1x,a21892)

--------------------------

method:

BLUP

variances: vara vard varg varp vare

2.520000000000000E-004 1.750000000000000E-006 3.56000000000000

2.15000000000000 0.190000000000000

residual is updated (corrected) every 1000 iterations

saving for continuation every 1000 iterations

--Gauss Seidel parameters--

convergence criterion: 1.000000000000000E-004

With the BLUP option convergence is shown:

eps: 6.13867049738422

10 ef 1 to 3 18.1022540273806 22.4239450726179

0.764741819531106 vara,vard,varg,varp,vare,pa(1),pd(1)

2.520000000000000E-004 1.750000000000000E-006 3.56000000000000

2.15000000000000 0.190000000000000 0.500000000000000

0.500000000000000

03/12/2009 08:07:07
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eps: 0.953530105950441

20 ef 1 to 3 18.1146884454257 22.4040588447695

0.651695870345913 vara,vard,varg,varp,vare,pa(1),pd(1)

2.520000000000000E-004 1.750000000000000E-006 3.56000000000000

2.15000000000000 0.190000000000000 0.500000000000000

0.500000000000000

03/12/2009 08:07:09

...

03/12/2009 08:11:48

1382 eps 9.952282839310986E-005

solutions stored in file:

solutions.cage.animal.txt

transforming X -> divide, weighted = F

transforming yZW ->divideweighted = F

EBV’s written in together.cage.par_EBVs

and the PREDICT option:

--predicting--

predicting ./exo2.txt from solutions in solutions.cage.animal.txt

to file ’predictions’

...

predictions written

EBV’s written in together.cage.predict_EBVs

--prediction finished, end of program!--

whereas with the MCMC option there are prints to the screen every thin
iterations, with current samples for variance components , and the first three
effects. It is interesting to check it because very high or low variances usually
mean convergence problems. An example of typical output is:

180 ef 1 to 3 18.1659058264173900 22.3168175878622961 -0.9125053797566799

vara,vard,varg,varp,vare

2.5278284029726145E-05 4.4187941104713875E-05 5.0546789753597645 1.3128332133040825

4.6393201375252893E-02

03/03/2008 15:22:27

181 ef 1 to 3 18.1723101703821399 22.3161450176608369 -2.2020347081531684

vara,vard,varg,varp,vare

2.4921646267398043E-05 4.4550490791343369E-05 5.0269364529095544 1.2122964151728810

4.3372956469675615E-02

03/03/2008 15:22:27

5.8.1 Solution file

The solution file name has been written in the parameter file. It looks as
follows:

effect level solution sderror

1 1 17.909976 0.0000000

1 2 22.058364 0.0000000

2 1 0.39519535 0.0000000

2 2 0.77136298 0.0000000

14



where the effect, level and solution are self-explanatory; as for the sderror, it
contains the standard error as computed by VCE or MCMCBLUP options:

effect level solution sderror

1 1 18.931753 0.38530390

1 2 23.084521 0.37154430

2 1 0.39389808 1.6882820

2 2 0.87480062 1.7113591

5.8.2 Variance components samples

These are stored in the appropriate file, which looks as follows:

vara vard varg varp vare

0.82285E-04 0.18682E-05 6.2945 0.54361 0.95970E-01

0.76974E-04 0.20309E-05 6.0273 0.56775 0.98271E-01

0.69268E-04 0.19860E-05 5.2333 0.68153 0.99926E-01

0.68800E-04 0.19725E-05 5.0527 0.75375 0.10187

0.62217E-04 0.19487E-05 4.7552 1.0035 0.10578

0.60666E-04 0.20387E-05 4.4073 1.2026 0.10424

0.61231E-04 0.19092E-05 4.6897 1.2870 0.97652E-01

You should run Post-Gibbs analysis to verify convergence using this file.

5.8.3 EBV file

A file with EBV’s is always generated, with name parameter file_EBVs.
This file contains the sum of marker locus effects for each record (identified
by its id) in the data set, as well as the polygenic breeding value for that
animal.

id EBV_aSNP EBV_dSNP EBV_anim EBV_overall

345 -0.593444 0.195513E-01 1.58850 1.01461

346 1.02768 0.133699E-01 1.54519 2.58624

347 -0.463641 0.110049E-01 -1.37548 -1.82812

348 0.709268 0.167737E-01 -1.02831 -0.302271

349 0.536807 0.111886E-01 -0.214559 0.333436

350 0.343763 0.104102E-01 -3.43426 -3.08008

5.8.4 Prediction file

When the PREDICT option is requested, a file predictions with predictions
is written; this file looks as follows:

id true prediction

345 0.000000000000000E+000 20.1683639909704

346 0.000000000000000E+000 26.5835060932076

347 0.000000000000000E+000 19.6251279892269

348 0.000000000000000E+000 22.1100022521052
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349 0.000000000000000E+000 17.1784939889099

350 0.000000000000000E+000 18.2351226649716

351 0.000000000000000E+000 25.4024678477097
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